If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-10x-45=0
a = 4.9; b = -10; c = -45;
Δ = b2-4ac
Δ = -102-4·4.9·(-45)
Δ = 982
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{982}=\sqrt{1*982}=\sqrt{1}*\sqrt{982}=1\sqrt{982}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-1\sqrt{982}}{2*4.9}=\frac{10-1\sqrt{982}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+1\sqrt{982}}{2*4.9}=\frac{10+1\sqrt{982}}{9.8} $
| 0.5x^2+1.5x+1=0 | | F(x)=-3/7 | | -4x^2-14x+32=0 | | 1.75(8-e)=2-1.25 | | 2(x+5)2=2(x-2) | | 32x^2+12x-57=0 | | X*6-2-x*4=2 | | 3X2-4x+9=0 | | 3+5(x-7)=3x+6) | | f(3)=475(0.5)3 | | -7x-3x=12 | | 5x–17=3x+7 | | (3x+7)=(5x–17) | | 4x-8=7-2 | | 0,5-7/x−21=-1,5 | | 10x+2=4x+9 | | 8x+2=4x-9 | | 3.1/14=x/8 | | x^2-236x+8684.8=0 | | X7y=-3 | | 76=6(1+6k)-k | | 3x-2=23+x | | 5-9x=7-8x | | 2/10d=8 | | 411z −24=48−2z | | 11x=3x+24 | | -28-2x=-56-9x | | 7/10d=U | | 8m+9m=72m | | X-(0.25x)=350 | | 25x+15=28x-21 | | 10=4/4+x |